Refine your search:     
Report No.
 - 
Search Results: Records 1-12 displayed on this page of 12
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Protective effects of hot spring water drinking and radon inhalation on ethanol-induced gastric mucosal injury in mice

Etani, Reo*; Kataoka, Takahiro*; Kanzaki, Norie*; Sakoda, Akihiro; Tanaka, Hiroshi; Ishimori, Yuu; Mitsunobu, Fumihiro*; Taguchi, Takehito*; Yamaoka, Kiyonori*

Journal of Radiation Research, 58(5), p.614 - 625, 2017/05

 Times Cited Count:13 Percentile:53.9(Biology)

Radon therapy using radon ($$^{222}$$Rn) gas is classified into two types of treatment: inhalation of radon gas and drinking water containing radon. Although short- or long-term intake of spa water is effective in increasing gastric mucosal blood flow, and spa water therapy is useful for treating chronic gastritis and gastric ulcer, the underlying mechanisms for and precise effects of radon protection against mucosal injury are unclear. In the present study, we examined the protective effects of hot spring water drinking and radon inhalation on ethanol-induced gastric mucosal injury in mice. Mice inhaled radon at a concentration of 2000 Be/m$$^{3}$$ for 24 h or were provided with hot spring water for 2 weeks. The activity density of $$^{222}$$Rn ranged from 663 Bq/l (start point of supplying) to 100 Bq/l (end point of supplying).Mice were then orally administered ethanol at three concentrations. The ulcer index (UI), an indicator of mucosal injury, increased in response to the administration of ethanol; however, treatment with either radon inhalation or hot spring water inhibited the elevation in the UI due to ethanol. Although no significant differences in antioxidative enzymes were observed between the radon-treated groups and the non-treated control groups, lipid peroxide levels were significantly lower in the stomachs of mice pre-treated with radon or hot spring water. These results suggest that hot spring water drinking and radon inhalation inhibit ethanol-induced gastric mucosal injury.

Journal Articles

Development of dose assessment code for accidental tritium releases; ACUTRI

Yokoyama, Sumi; Noguchi, Hiroshi; Kurosawa, Naohiro*

Hoken Butsuri, 40(4), p.376 - 384, 2005/12

A computer code named ACUTRI has been developed to assess tritium doses due to inhalation to the general public. ACUTRI can calculate the radiological impact of tritium gas (HT) and tritiated water (HTO) released accidentally to the atmosphere. The models in this code consist of a tritium transfer model including the oxidation of HT to HTO and the reemission of HTO from soil to the atmosphere and a dose calculation model. The atmospheric dispersion of the primary HT and HTO plumes and secondary HTO plume, which is reemitted from soil to the atmosphere, is calculated by using the Gaussian plume model. In this calculation, it is possible to analyze statistically on meteorology in the same way as a conventional dose assessment method according to the meteorological guideline of the Nuclear Safety Commission of Japan. Tritium concentrations in air and their resultant doses were calculated using the ACUTRI code under some conditions. In order to validate the model, calculations were compared with experimental results.

JAEA Reports

Internal dose coefficients for off-site radiological consequence analysis of nuclear reactor accidents

Hato, Shinji*; Homma, Toshimitsu

JAERI-Data/Code 2005-006, 549 Pages, 2005/09

JAERI-Data-Code-2005-006.pdf:33.24MB

The OSCAAR computer code for use in probabilistic accident consequence assessment (Level3PSA) developed at JAERI has calculated dose to the public with internal dose conversion factors based on dosimetric models and biokinetic data provided in ICRP Publication 30. Since ICRP issued age-dependent biokinetic models for a limited set of radioisotopes as ICRP Publication 56, a new Human Respiratory Tract model, age-dependent biokinetic model for other radioisotopes and urinary and faecal excretion models were issued. ICRP has published age-dependent internal dose coefficients for a large set of radionuclides in its publications, but they provided only committed effective dose coefficients for inhalation and ingestion. Since OSCAAR estimated acute and late health effects for public, it needs internal dose coefficients for specific tissues and organs in arbitrary integration times.This report describes a code DSYS developed for calculating dose coefficients based on these new ICRP models. It also provides the internal dose coefficients for 54 radionuclides used in OSCAAR calculations.

JAEA Reports

ACUTRI: A Computer code for assessing doses to the general public due to acute tritium releases

Yokoyama, Sumi; Noguchi, Hiroshi; Ryufuku, Susumu*; Sasaki, Toshihisa*; Kurosawa, Naohiro*

JAERI-Data/Code 2002-022, 87 Pages, 2002/11

JAERI-Data-Code-2002-022.pdf:4.26MB

Tritium, which is used as a fuel of a D-T burning fusion reactor, is the most important radionuclide for the safety assessment of a nuclear fusion experimental reactor such as ITER. Thus, a computer code, ACUTRI, which calculates the radiological impact of tritium released accidentally to the atmosphere, has been developed, aiming to be of use in a discussion on licensing of a fusion experimental reactor and an environmental safety evaluation method in Japan. ACUTRI calculates an individual tritium dose based on transfer models specific to tritium in the environment. A Gaussian plume model is used for calculating the atmospheric dispersion of tritium gas (HT) and/or tritiated water (HTO). The environmental pathway model in ACUTRI considers the following internal exposures: inhalation from a primary plume (HT and/or HTO) released from the facilities and inhalation from a secondary plume (HTO) reemitted from the ground following deposition of HT and HTO. This report describes an outline of the ACUTRI code, a user guide and the results of test calculation.

JAEA Reports

Dose coefficients for radionuclides produced in high energy proton accelerator facilities; Coefficients for radionuclides not listed in ICRP publications

Kawai, Katsuo; Endo, Akira; Noguchi, Hiroshi

JAERI-Data/Code 2002-013, 66 Pages, 2002/05

JAERI-Data-Code-2002-013.pdf:2.75MB
JAERI-Data-Code-2002-013-DoseCD.pdf:81.85MB

Effective dose coefficients by inhalation and ingestion have been calculated for 334 nuclides, including (1) nuclides with half-lives $$ge$$ 10min and their daughters that are not listed in ICRP Publications and (2) nuclides with half-lives $$<$$ 10min that are produced in a spallation target. Dose calculation was carried out using a nuclear decay database DECDC and a decay data library newly compiled from the ENSDF. The dose coefficients were calculated with the computer code DOCAP based on the respiratory tract model and biokinetic model of ICRP. The calculated results are presented as tables, which are the same forms as those in ICRP Publs.68 and 72. The complete listings of the dose coefficients are arranged on a CD-ROM, DoseCD, as indexed tables for inhalation of ten particle sizes, ingestion and injection into blood for workers and members of the public. The dose coefficients calculated in the present study are useful to calculate internal doses for a variety of radionuclides produced in high energy proton accelerator facilities.

Journal Articles

Development of dose assessment code for accidental releases of activation products

Noguchi, Hiroshi; Yokoyama, Sumi

Proceedings of 10th International Congress of the International Radiation Protection Association (IRPA-10) (CD-ROM), 6 Pages, 2000/05

no abstracts in English

JAEA Reports

Dose coefficients for intakes of radionuclides by workers; Coefficients for radionuclides not listed in ICRP Publication 68

Endo, Akira; Yamaguchi, Yasuhiro

JAERI-Data/Code 99-047, p.24 - 0, 1999/12

JAERI-Data-Code-99-047.pdf:0.88MB

no abstracts in English

Journal Articles

Dose delivered by unit amount of tritium released into the environment

Murata, Mikio; Noguchi, Hiroshi

Journal of Nuclear Science and Technology, 34(2), p.176 - 184, 1997/02

 Times Cited Count:1 Percentile:14.48(Nuclear Science & Technology)

no abstracts in English

Journal Articles

Computer code TERFOC-N to calculate doses to public using terrestrial foodchain models improved and extended for long-lived nuclides

Togawa, Orihiko

Journal of Nuclear Science and Technology, 27(4), p.360 - 374, 1990/04

no abstracts in English

Oral presentation

Potential inhalation dose due to remediation activities in the Fukushima exclusion zone

Tschiersch, J.*; Yoshimura, Kazuya; Spielmann, V.*; Hurkamp, K.*; Iijima, Kazuki; Shinonaga, Taeko*; Miyahara, Kaname

no journal, , 

Inhalation dose depends on the kind and amount of inhaled radionuclides, but also on the size of radioactive particles and the solubility of the radionuclides in the lungs. Initial measurements during decontamination provide experimental data of the main parameters. These are particle size distribution with activity median aerodynamic diameter (AMAD) and geometric standard deviation and the solubility in the lungs. The dose assessment is performed according ICRP lung model using the computer code IMBA professional. Doses determined from measured parameters are compared to those using ICRP default values. Variability is studied and the range of potential inhalation dose is assessed.

Oral presentation

Inhalation dosimetry; Physicochemical differences between primary plume and resuspended material

Tschiersch, J.*; Spielmann, V.*; Shinonaga, Taeko*; Hurkamp, K.*; Yoshimura, Kazuya; Okura, Takehisa; Iijima, Kazuki; Miyahara, Kaname

no journal, , 

12 (Records 1-12 displayed on this page)
  • 1